Evaluation of Handwriting Movement Kinematics: From an Ecological to a Magnetic Resonance Environment
نویسندگان
چکیده
Writing is a means of communication which requires complex motor, perceptual, and cognitive skills. If one of these abilities gets lost following traumatic events or due to neurological diseases, handwriting could deteriorate. Occupational therapy practitioners provide rehabilitation services for people with impaired handwriting. However, to determine the effectiveness of handwriting interventions no studies assessed whether the proposed treatments improved the kinematics of writing movement or had an effect at the level of the central nervous system. There is need to find new quantitative methodologies able to describe the behavioral and the neural outcomes of the rehabilitative interventions for handwriting. In the present study we proposed a combined approach that allowed evaluating the kinematic parameters of handwriting movements, acquired by means of a magnetic resonance-compatible tablet, and their neural correlates obtained simultaneously from a functional magnetic resonance imaging examination. Results showed that the system was reliable in term of reproducibility of the kinematic data during a test/re-test procedure. Further, despite the modifications with respect to an ecological writing movement condition, the kinematic parameters acquired inside the MR-environment were descriptive of individuals' movement features. At last, the imaging protocol succeeded to show the activation of the cerebral regions associated with the production of writing movement in healthy people. From these findings, this methodology seems to be promising to evaluate the handwriting movement deficits and the potential alterations in the neural activity in those individuals who have handwriting difficulties. Finally, it would provide a mean to quantitatively assess the effect of a rehabilitative treatment.
منابع مشابه
Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging
Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...
متن کاملA new method to record and control for 2D-movement kinematics during functional magnetic resonance imaging (fMRI).
The recording of movement kinematics during functional magnetic resonance imaging (fMRI) experiments is complicated due to technical constraints of the imaging environment. Nevertheless, to study the functions of brain areas related to motor control, reliable and accurate records of movement trajectories and speed profiles are needed. We present a method designed to record and characterize the ...
متن کاملCLINICAL CORRELATIONS BETWEEN AUDITORY BRAIN STEM RESPONSE AND MAGNETIC RESONANCE IMAGING IN PATIENTS WITH DEFINITE MULTIPLE SCLEROSIS
In an attempt to assess objectively the integrity of the auditory pathways in 30 patients with definite multiple sclerosis (MS), an audiometric evaluation was performed and auditory brainstem responses (ABRs) were obtained. Stressing the auditory system by increasing the stimulation rate showed some enhancement in the identification of MS. 24 (RO%) patients had an abnormal ABR along with c...
متن کاملGeometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes
Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...
متن کاملThe modeling of induced current density in eyes from static magnetic fields produce by MR scanner
Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...
متن کامل